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Effects of corrugated temperature sheets on optical propagation

along quasi-horizontal paths in the stably stratified atmosphere

Final Report, Contract #FA9550-12-C-0070

AFOSR, Remote Sensing and Imaging Physics program

by Andreas Muschinski

(December, 2015)

Project Summary

Optical propagation through the clear atmosphere is affected by small-scale refractive-index fluc-
tuations which are caused mainly by temperature fluctuations. In the stably stratified atmosphere,
these temperature fluctuations are the result of a combination of (1) more or less homogeneous and
isotropic turbulence and (2) non-turbulent, quasi-horizontal interfaces, or “sheets”. Collocated in-
situ and optical field measurements conducted in the atmospheric surface layer confirmed that angle-
of-arrival fluctuations and irradiance fluctuations observed with large-aperture telescopes (36 cm
aperture diameter) are consistent with theoretical predictions based on Taylor’s frozen-turbulence
hypothesis and the geometrical-optics approximation. Short-term (less than a few seconds) fluctu-
ations are dominated by turbulence while longer-term fluctuations are dominated by horizontally
extended sheets. Direct numerical simulations of isotropic turbulence showed very good agreement
with the turbulence spectrum predicted by Hill’s 1978 model. A theoretical model of corrugated
sheets was developed and analyzed.

Contact:
Dr. Andreas Muschinski
NorthWest Research Associates, Inc. (NWRA), Boulder Office
3380 Mitchell Lane
Boulder, CO 80301
Email andreas@nwra.com
Tel. (303) 415-9701 ext. 228
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1 Background

The modern physics of optical propagation through the turbulent atmosphere, pioneered by Tatarskii
and coworkers in the 1950s and 1960s (Tatarskii, 1961, 1971), continues to be the conceptual basis
for progress in various science and engineering disciplines, such as remote sensing of the optically
clear atmosphere, astronomy, free-space optical communication, directed-energy technology, and
terrestrial and extraterrestrial imaging and surveillance (e.g., Ishimaru, 1978; Strohbehn, 1978; Ry-
tov et al., 1989; Roggemann and Welsh, 1996; Wheelon, 2001, 2003; Andrews and Phillips, 2005;
Schmidt, 2010; Sasiela, 2007; Korotkova, 2014).

During the last decade or so, effects of anisotropic turbulence on optical propagation have become
an important research focus within the optical-propagation community. So-called “non-Kolmogorov
turbulence” models (e.g., Toselli et al., 2008; Toselli and Korotkova, 2015) have been introduced
that deviate from the classical −11/3 power law predicted by the Obukhov-Corrsin theory of scalar
turbulence. One goal of this project has been to develop, as an alternative to the “non-Kolmogorov
turbulence” models, a statistical model of non-turbulent, non-overturning, corrugated interfaces,
or “sheets” that have long been known to be ubiquitous in the stably stratified atmosphere (e.g.,
Doviak and Zrnić, 1984; Muschinski, 2004; Dalaudier et al., 1994; Muschinski and Wode, 1998).

2 Project Outcomes

In the following, we summarize the main project outcomes.

2.1 Observations

2.1.1 Optical measurements of cross-wind velocity

The temporal cross-correlation function of the angle-of-arrival (AOA) fluctuations of two optical
waves propagating through atmospheric turbulence carries information regarding the average wind
velocity transverse to the propagation path. In Tichkule and Muschinski (2012), we presented
and discussed two estimators for the retrieval of the path-averaged, beam-transverse, horizontal
wind velocity, vt. Both methods retrieve vt from the temporal cross-correlation function of AOA
fluctuations obtained from two closely spaced, light-emitting diodes (LEDs). The first method
relies on the time delay of the peak (TDP) of the cross-correlation function, and the second method
exploits its slope at zero lag (SZL). Over a 9 h period during which vt varied between −1.3 m s−1

and 2.0 m s−1, the maximum rms difference between optically retrieved and in-situ measured, 10-s
estimates of vt was found to be 0.18 m s−1 for the TDP estimator and 0.23 m s−1 for the SZL
estimator.

2.1.2 Wind-induced telescope vibrations

Turbulence in the atmospheric refractive-index field causes optical angle-of-arrival (AOA) fluctu-
ations that can be used for atmospheric remote sensing of various parameters, including wind
velocities and the optical refractive-index turbulence structure parameter, C2

n. If AOA measure-
ments are contaminated by wind-induced telescope vibrations, the underlying retrieval algorithms
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may fail. In order to study the effects of wind-driven telescope vibrations on optical-turbulence
measurements, we conducted a field experiment in which we exposed two small telescopes delib-
erately to the wind (Tichkule and Muschinski, 2014). We measured AOA fluctuations of visible
light propagating along a horizontal, 174 m long path 1.7 m above flat terrain, and we used fast-
response ultrasonic anemometers to measure the wind velocity at multiple locations along the path.
We found (1) that the AOA turbulence spectra were contaminated by multiple resonance peaks, (2)
that the resonance frequencies were independent of the wind speed, and (3) that the AOA variance
associated with the dominating vibration mode was proportional to the fourth power of the wind
speed.

2.2 Theory

2.2.1 Homogeneous and isotropic turbulence

The three-dimensional (3D) spectrum Φ(κ) of the turbulent air temperature fluctuations is a key
quantity for the physics of optical propagation through the turbulent atmosphere. The standard
model, which was derived in the 1950s by Tatarskii from the Obukhov-Corrsin theory of homo-
geneous and isotropic turbulence, is Φ(κ) = 0.033C2

Tκ
−11/3h(κl0), where κ = |κ| is the wave

number, C2
T is the temperature structure parameter, l0 is the inner temperature scale, and h(κl0)

is a universal function that approaches 1 for wave numbers in the inertial range and drops to
zero for κl0 ≫ 1. Certain performance characteristics of optical systems, such as the scintil-
lation index for small receiving apertures, depend sensitively on the functional form of h(y) at
y ≈ 1. During the last 70 years, the optical-turbulence community has developed and applied
various heuristic h(y) models. There is a constraint that any valid h(y) model has to fulfill:∫∞
0 h(y)y1/3dy = (27/10)Γ(1/3) = 7.233. This constraint is a dimensionless form of the spectral
temperature variance dissipation equation, which follows directly from first-principle fluid me-
chanics. In Muschinski (2015), we showed that Tatarskii’s cut-off (Tatarskii, 1961) and Gaussian
(Tatarskii, 1971) models fulfill this constraint while three more recent models, including the widely
used Andrews model (Andrews, 1992), do not. The dissipation constraint can be used to “re-
calibrate” the coefficients in these models.

2.2.2 Statistical model of corrugated temperature sheets

It is a standard assumption in the theory of optical propagation through the turbulent atmosphere
that the refractive-index fluctuations n1(x) are statistically isotropic. It is well known, however,
that n1(x) in the free atmosphere and in the nocturnal boundary layer is often strongly anisotropic,
even at the smallest scales. We introduced and analyzed (Muschinski, 2016) a model atmosphere
characterized by corrugated but non-overturning refractive-index interfaces, or “sheets,” such that
n1(x) = v[z − h(x, y)], where v(z) is a random function with a 1D spectrum V (κz) that describes
the vertical microstructure, and h(x, y) is a random function of the horizontal coordinates x and
y, which characterizes the local vertical displacement of the vertical microstructure. On the basis
of some natural simplifying assumptions, we derived a closed-form expression for the 3D spectrum
Φ(κ). This 3D spectrum differs from commonly used spectra in that the 3D spectral density
decreases horizontally in the form of a Gaussian function, not as a power law. We show that if the
vertical 1D spectrum follows a power law, then the horizontal 1D spectra follow the same power
law but at a lower spectral level.
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2.3 Computer simulations

For almost four decades, Hill’s “Model 4” (Hill, 1978) has played a central role in research and tech-
nology of optical turbulence. Based on Batchelor’s generalized Obukhov-Corrsin theory of scalar
turbulence, Hill’s model predicts the dimensionless function h(κl0,Pr) that appears in Tatarskii’s
well-known equation for the three-dimensional refractive-index spectrum in the case of homoge-
neous and isotropic turbulence, Φn(κ) = 0.033C2

nκ
−11/3h(κl0,Pr). In Muschinski and de Bruyn

Kops (2015), we investigated Hill’s model by comparing numerical solutions of Hill’s differential
equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our
DNS solved the Navier-Stokes equation for the three-dimensional velocity field and the scalar trans-
port equation for the scalar field on a numerical grid containing 40963 grid points. Two independent
DNS runs were analyzed, one with the Prandtl number Pr = 0.7 and a second run with Pr = 1.0. We
found very good agreement between h(κl0,Pr) estimated from the DNS output data and h(κl0,Pr)
predicted by the Hill model. We found that the height of the Hill bump is 1.79Pr1/3, implying that
there is no bump if Pr < 0.17. Both the DNS and the Hill model predict that the viscous-diffusive
“tail” of h(κl0,Pr) is exponential, not Gaussian.
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